
ACM LISP Pointers IV,2 (April-June 1991),3-15.

© 1991 Nimble Computer Corporation 1

Pragmatic Parsing in Common Lisp

Henry G. Baker

Nimble Computer Corporation
16231 Meadow Ridge Way
Encino, CA 91436
USA
(818) 986-1436 (818) 986-1360 (FAX)

January, 1991

This work was supported in part by the U.S. Department of Energy Contract No. DE-AC03-88ER80663

We review META, a classic technique for building recursive descent parsers, that is both simple
and efficient. While META does not handle all possible regular or context-free grammars, it
handles a surprisingly large fraction of the grammars encountered by Lisp programmers. We
show how META can be used to parse streams, strings and lists—including Common Lisp's hairy
lambda expression parameter lists. Finally, we compare the execution time of this parsing method
to the built-in methods of Common Lisp.

A. INTRODUCTION

Lisp has traditionally been a language that eschews complex syntax. According to John McCarthy,
the inventor of Lisp:

This internal representation of symbolic information gives up the familiar infix notations in favor of a
notation that simplifies the task of programming the substantive computations, e.g., logical deduction or
algebraic simplification, differentiation or integration. If customary notations are to be used externally,
translation programs must be written. Thus LISP programs use a prefix notation for algebraic
expressions, because they usually must determine the main connective before deciding what to do next. In
this, LISP differs from almost every other symbolic computation system. ... This feature probably
accounts for LISP's success in competition with these languages, especially when large programs have to
be written. The advantage is like that of binary computers over decimal—but larger.

... Another reason for the initial acceptance of awkwardnesses in the internal form of LISP is that we still
expected to switch to writing programs as M-expressions [infix format]. The project of defining
M-expressions precisely and compiling them or at least translating them into S-expressions was neither
finalized nor explicitly abandoned. It just receded into the indefinite future, and a new generation of
programmers appeared who preferred internal notation to any FORTRAN-like or ALGOL-like notation that
could be devised.

... One can even conjecture that LISP owes its survival specifically to the fact that its programs are lists,
which everyone, including me, has regarded as a disadvantage. Proposed replacements for LISP ...
abandoned this feature in favor of an Algol-like syntax, leaving no target language for higher level
systems. [McCarthy78], with emphasis added.

Accordingly, Lisp users and developers have usually had the luxury of dealing with more
"substantive" computations, so that they are often at a loss when they face a parsing task. No
matter how hard they try to write clean, efficient code, the Lisp language doesn't seem to provide
them with the right linguistic constructs to make an elegant program.

The programs required to implement a Common Lisp system itself provide some good examples
where parsing techniques are required. Parsing the rather hairy parameter lists of Common Lisp
lambda-expressions [Steele90,5.2.2] has caused many good programmers to tear their hair out,
and ditto for the syntax of many built-in Common Lisp macros (e.g., defclass and defmethod).1

1See, e.g., the definition of Closette [des Rivières90]. The inability of defmacro to easily parse the syntax of the
more complex Common Lisp macros exhibits a significant weakness in Common Lisp. The technique reviewed
here can handle complex macros such as defmethod.

ACM LISP Pointers IV,2 (April-June 1991),3-15.

© 1991 Nimble Computer Corporation 2

The parsing of numbers and "potential numbers" in the Lisp reader [Steele90,22.1.2] requires
extensive syntax-hacking. format control strings [Steele90,22.3.3] require parsing at run-time (or
perhaps at compile time [Steele90,27.5], if format uses a compiler optimizer). Finally, many
networking protocols require extensive (and often excessive) syntax analysis; slow protocol
parsing is typically the chief cause of poor network performance.

Prolog programmers, however, find parsing tasks trivial,2 and the ease of programming parsing
tasks has been one of the selling points of Prolog to unsophisticated programmers.

Lisp has a few tricks up its sleeve, however. Lisp is a language-building language par excellence,
and it can therefore easily emulate those Prolog capabilities that make parsing simple.
Furthermore, since our emulation will include only those features we need, we will be able to parse
much more quickly than a Prolog system. Finally, the technique does not require the splitting of
the parsing task into separate lexical and syntactic analyses, futher simplifying the parsers.

B. REGULAR EXPRESSIONS

Every computer scientist knows about regular expressions, which describe regular languages, and
the ability of deterministic and non-deterministic finite state machines to recognize these languages.
Regular expressions over an alphabet consist of the letters of that alphabet ("symbols"), together
with a number of operations: concatenation, union and Kleene star. Concatenation describes how
the letters can follow one another to make strings, and union allows one to have different
alternative expressions that are equivalent. Finally, Kleene star allows for "zero or more"
concatenated occurrences of a particular expression to be another expression. Regular expressions
can be a very compact and moderately readable description of a regular language, and they have
become a standard as a result.

Finite state machines consist of an alphabet, a number of states, one of which is designated as an
"initial" or "starting" state, and some of which are "final" or "accepting" states, and a relation
which maps a combination of a state and an alphabet letter into a "next" state. If the relation is an
algebraic function, then the finite state machine is deterministic, otherwise it is non-deterministic.
Given any finite state machine, it can be algorithmically converted into a deterministic finite state
machine by simulating sets of states starting from the singleton set consisting of the initial state,
and tracing out all state combinations, which are necessarily finite. There may be an exponential
blowup in the number of states, however.

Deterministic finite state machines make excellent parsers because they can be implemented very
efficiently on serial computers using table-lookup, and their speed is therefore independent of the
complexity of the next-state function. Unfortunately, the number of states—and hence the size of
the next-state table—is usually quite large for relatively simple languages, and even if it is not, the
programming of these tables is extremely tedious and error-prone. Thus, the computation of finite
state machines is an excellent job for a compiler.

The mapping of regular expressions onto non-deterministic finite state machines is trivial; the
harder part is the conversion to deterministic form, which can blow up exponentially.3

Deterministic conversion has a number of drawbacks, however. The deterministic finite state
machine may bear little resemblence to the original regular expression, and more importantly, the
conversion to deterministic form will not generalize to context free languages, which we will tackle
in the next section.

We would therefore like to investigate a scheme which keeps the original structure of the regular
expression, and also has most of the efficiency of a deterministic finite state machine. This cannot
be done in general, but it can be done for most regular expressions that are encountered in practise.
It might be asked why one would consider a less powerful and potentially less efficient method,
when computer science has already given us a universal and efficient method—deterministic finite

2Perhaps too trivial, as some Prolog programmers turn simple grammers into parsers with exponential behavior.

3The sheer size of these state tables may kill the advantage of instruction and/or data caches.

ACM LISP Pointers IV,2 (April-June 1991),3-15.

© 1991 Nimble Computer Corporation 3

state machines. The reason is that we are usually interested in non-regular languages—particularly
context free languages—where this particular sledgehammer fails.

1. META Parsing of Common Lisp Streams

The scheme we will describe has been used for at least 27 years, but is relatively unknown today,
because computer science departments are rightly more interested in teaching theoretically pretty
models like regular and context-free languages, rather than practical methods that may also be
elegant and efficient.4 The scheme involves building a tiny language on top of Lisp which
compiles to extremely efficient code. The tiny language, called META [Schorre64], incorporates
the basic operations of regular expressions, and the code is therefore quite perspicuous.

Let us see the META code for recognizing signed integers.

(deftype digit () '(member #\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9))5

(defun parse-integer (&aux d)

 (matchit [{#\+ #\- []} @(digit d) $@(digit d)]))

We first define a new Common Lisp type which is a subset of the characters that includes just the
digits. We then define our parser for integers as a function with a temporary variable and a body
which is a call to the macro matchit. matchit has an argument which is a META expression
which it compiles into Common Lisp when it is expanded. The META expression includes two
new kinds of "parentheses": brackets "[]" and braces "{}", as well as operators like "$" and "@".
The brackets "[]" enclose sequences, while the braces "{}" enclose alternatives; the use of these
additional "parentheses" eliminates the need for prefix or infix operations.6

The META operators "[]", "{}", and "$" provide the sequence, union and Kleene star operations
of regular expressions, so most regular expressions can be converted into META expressions by
inspection. Letters stand for themselves in normal Common Lisp syntax, e.g., #\+, and @ allows
the matching of a number of character possibilities with a single operation. The use of
@(digit d) in parse-integer could logically have been replaced by the expression

{#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9},

but it would not have been as clear or efficient.7 The META expression for parse-integer says
that integers should be preceded by a sign of plus or minus or nothing, followed by a digit, and
then followed by any number (including none) of additional digits. We note that the regular
expression alternative of having a possibly empty digit sequence first, followed by a single digit,
will not work in META, however. The reason for this will become clear.

If all META did was recognize regular expressions, it would not be very useful. It is a
programming language, however, and the operations [], {} and $ correspond to the Common Lisp
control structures AND, OR, and DO.8 Therefore, we can utilize META to not only parse, but also
to transform. In this way, META is analogous to "attributed grammars" [Aho86], but it is an order
of magnitude simpler and more efficient. Thus, with the addition of the "escape" operation "!",
which allows us to incorporate arbitrary Lisp expressions into META, we can not only parse
integers, but produce their integral value as a result.9

4Unfortunately, it is not clear where the art of programming will be taught.

5A potentially more efficient and general, but perhaps less perspicuous definition would define digit as
(deftype digit () '(satisfies digit-char-p)).

6Modern text editors (e.g., EMACS) can be customized to match braces and brackets as easily as parentheses.

7We show later how to deal with inefficient Common Lisp typep's.

8More precisely, $x is analogous to (NOT (DO () ((NOT x))). META control structures thus bear more
than a passing resemblance to the TECO text editor control structures (TECO still comes with DEC VMS software).

9If Kernighan and Ritchie had been aware of META parsing techniques, the C language [Kernighan78] would have
had for (loop) expressions, rather than statements, and lex/yacc [Johnson78] might now be mere curiosities.

ACM LISP Pointers IV,2 (April-June 1991),3-15.

© 1991 Nimble Computer Corporation 4

Below is a parser for signed integers which returns the integer.

(defun ctoi (d) (- (char-code d) #.(char-code #\0)))

(defun parse-int (&aux (s +1) d (n 0))

 (and

 (matchit

 [{#\+ [#\- !(setq s -1)] []}

 @(digit d) !(setq n (ctoi d))

 $[@(digit d) !(setq n (+ (* n 10) (ctoi d)))]])

 (* s n)))

Below is the code into which it compiles.

(defun parse-int (&aux (s +1) d (n 0))

 (and

 (and (or (match #\+)

 (and (match #\-) (setq s -1))

 (and))

 (match-type digit d) (setq n (ctoi d))

 (not (do () ((not (and (match-type digit d)

 (setq n (+ (* n 10) (ctoi d)))))))))

 (* s n)))

Before we can delve further into match and match-type, we must make clear what it is we are
trying to parse—whether it be a Common Lisp character stream, a character string, or a Lisp list.
If the source of the text we are trying to parse is an internal source, like a character string or a Lisp
list, then we are in a position to be able to back up. If the source is a standard Common Lisp
character stream, however, then we can only look ("peek") one character ahead.

First, consider a standard Common Lisp character stream source:

(defmacro match (x) `(when (eql10 (peek-char) ',x) (read-char)))

(defmacro match-type (x v)

 `(when (typep (peek-char) ',x) (setq ,v (read-char))))

These macros allow us to match a given character or character type against the input stream, and if
the match succeeds, the stream is advanced, while if the match fails, then the stream is left where it
was. Unfortunately, once a match succeeds against such a source, we are now committed to that
path, because we can no longer back up. This means that the original regular expression must be
"deterministic", in the sense that any sequence is determined by its first element.

While this determinism requirement would seem to substantially limit our technique, one can
usually get around the restriction by "factoring out" of an alternative the leftmost character of the
alternate sequences. For example, the expression {[#\: #\@] [#\:]} can be factored to get
[#\: {#\@ []}]. (Of course, one should also put off performing any transformation side-effects
until one has arrived at the correct alternative branch.) Using this technique, we can scan an
optional sign, digits, and an optional decimal point from the front of a number, even before we
know whether the number will be an integer, a ratio, or a floating-point number [Steele90,22.1.2].
A ratio will be signalled by a "/", a floating-point number will be signalled by additional digits or
an exponent, and an integer will have none of these.11

10The use of eql keeps match and match-type consistent; eql is required, in general, for comparing
characters. See [Baker93] for a lengthy discussion on object equality.

11The case of Lisp's isolated dot "." is most easily and efficiently handled by initially parsing it as the "integer"
zero!

ACM LISP Pointers IV,2 (April-June 1991),3-15.

© 1991 Nimble Computer Corporation 5

Below is a parser/transformer for Common Lisp real numbers [Steele90,22.1.2].

(deftype sign () '(member #\+ #\-))

(deftype expmarker () '(member #\e #\s #\f #\d #\l #\E #\S #\F #\D #\L))

(defun parse-number (&aux x (is #\+) id (i 0) dd (d 0)
 fd (f 0) (nf 0) (es #\+) ed (e 0) (m #\e))

 ;;; Parse CL real number according to [Steele90,22.1.2]

 ;;; Return 2 values: the number and a reversed list of lookahead characters.

 (matchit

 [{[@(sign is) !(push is x)] []} ; scan sign.

 $[@(digit id) !(setq x nil i (+ (* i 10) (ctoi id)))] ; integer digits.

 {[!id #\/ !(push #\/ x) ; "/" => ratio.

 $[@(digit dd) !(setq x nil d (+ (* d 10) (ctoi dd)))]] ; denom. digits.

 [{[#\. {!id !(push #\. x)} ; decimal point.

 $[@(digit fd)

 !(setq x nil nf (1+ nf) f (+ (* f 10) (ctoi fd)))]] ; fract. digits.

 []}

 {[{!id !fd} @(expmarker m) !(push m x) ; exp. marker.

 {[@(sign es) !(push es x)] []} ; exponent sign.

 $[@(digit ed) !(setq x nil e (+ (* e 10) (ctoi ed)))]] ; exp. digits.

 []}]}])

 (let ((sign (if (eql is #\-) -1 1))

 (ex (if (eql es #\-) (- e) e)))

 (values (cond ((or fd ed) (make-float m sign i f nf ex)) ; see [Clinger90]

 (dd (/ (* sign i) d))

 (id (* sign i))

 (t nil))

 x)))

We first note that this half-page function is only slightly longer than the grammar for numbers
given in [Steele90,22.1.2], and is only slightly less readable. Second, we note that we have
utilized both null tests on local variables in addition to the standard match predicates in this
program. For example, the test {!id !fd}, which checks for the existence of either integer or
fraction digits, must succeed before the exponent marker can be scanned. Third, preserving the
characters that were looked at but not used requires additional work, because Common Lisp
streams support only 1 character lookahead, yet many Common Lisp parsing tasks require up to 3
lookahead characters.

Below is the actual META compiler.

(defun compileit (x)

 (typecase x

 (meta

 (ecase (meta-char x)

 (#\! (meta-form x))

 (#\[`(and ,@(mapcar #'compileit (meta-form x))))

 (#\{ `(or ,@(mapcar #'compileit (meta-form x))))

 (#\$ `(not (do ()((not ,(compileit (meta-form x)))))))

 (#\@ (let ((f (meta-form x))) `(match-type ,(car f) ,(cadr f))))))
 (t `(match ,x))))

(defmacro matchit (x) (compileit x))

ACM LISP Pointers IV,2 (April-June 1991),3-15.

© 1991 Nimble Computer Corporation 6

We will also need a few macro character definitions for the additional syntax.

(defstruct (meta

 (:print-function

 (lambda (m s d &aux (char (meta-char m)) (form (meta-form m)))

 (ecase char

 ((#\@ #\! #\$) (format s "~A~A" char form))

 (#\[(format s "[~{~A~^ ~}]" form))

 (#\{ (format s "{~{~A~^ ~}}" form))))))

 char

 form)

(defun meta-reader (s c) (make-meta :char c :form (read s)))

(mapc #'(lambda (c) (set-macro-character c #'meta-reader)) '(#\@ #\$ #\!))

(set-macro-character #\[

 #'(lambda (s c) (make-meta :char c :form (read-delimited-list #\] s t))))

(set-macro-character #\{

 #'(lambda (s c) (make-meta :char c :form (read-delimited-list #\} s t))))

(mapc #'(lambda (c) (set-macro-character c (get-macro-character #\) nil)))

 '(#\] #\}))

2. META Parsing of Common Lisp Strings

In many cases, we want to parse strings rather than streams. While we could use the Common
Lisp function make-string-input-stream along with our previous code, we will find that
matching and especially backing-up will be faster on strings. Since we no longer have to worry
about backing up, we will be able to search further forward without having to factor the grammar
as described in the previous section. We need not capture the actual characters as a substring is
scanned, but need only save their beginning and ending locations, because we still have access to
the original string; this feature speeds the parsing of format control strings, in which major
portions of the given string are just constant characters.

Our matchit macro will now generate code that implicitly refers to the lexical variables string,
index (the starting index), and end (the ending index), which should be defined in the lexically
surrounding environment. By utilizing lexical instead of special (dynamic) variables, we can gain
substantially in execution speed, and the same techniques will work in other languages—e.g.,
Scheme—assuming that they have powerful enough macro facilities.

(defmacro match (x)

 `(when (and (< index end) (eql (char string index) ',x))

 (incf index))

(defmacro match-type (x v)

 `(when (and (< index end) (typep (char string index) ',x))

 (setq ,v (char string index)) (incf index))

(defun parse-int (string &optional (index 0) (end (length string))

 &aux (s +1) d (n 0))

 ;;; Lexical 'string', 'index', and 'end', as required by matchit.

 (and

 (matchit

 [{#\+ [#\- !(setq s -1)] []}

 @(digit d) !(setq n (ctoi d))

 $[@(digit d) !(setq n (+ (* n 10) (ctoi d)))]])

 (* s n)))

Due to our ability to back up when parsing strings, we can now enhance our META language with
a construct to match a constant string—e.g., "abc"—instead of having to match the individual

ACM LISP Pointers IV,2 (April-June 1991),3-15.

© 1991 Nimble Computer Corporation 7

letters [#\a #\b #\c]. We do this by saving the current string pointer before beginning the
match, and backing up to the saved index if the match fails—even after the first character.

(defmacro match (x)

 (etypecase x

 (character

 `(when (and (< index end) (eql (char string index) ',x))

 (incf index)))

 (string

 `(let ((old-index index)) ; 'old-index' is a lexical variable.

 (or (and ,@(map 'list #'(lambda (c) `(match ,c)) x))

 (progn (setq index old-index) nil))))))

3. META Parsing of Lisp Lists

So far, we have only parsed character strings. Common Lisp lambda parameter lists and macros
require the ability to parse Lisp lists, however. Below is a parser for lambda parameter lists with
only required and optional parameters. We give a parser for full lambda-lists as an appendix.12

(deftype vname () `(and symbol (not (member ,@lambda-list-keywords))))

(defun lambda-list (ll &aux (index `(,ll)) var initform svar)

 (matchit

 ($@(vname var)

 {[&OPTIONAL ; we use upper case here only for readability.

 ${@(vname var)

 (@(vname var)

 {[@(t initform) {@(vname svar) []}]

 []})}]

 []})))

Interestingly enough, we can utilize the same parsing techniques on lists that we used on streams
and strings. We need only rewrite match and match-type. We first show a version that matches
only atoms.

(defmacro match (x)

 `(when (and (consp index) (eql (car index) ',x))

 (pop index) t))

(defmacro match-type (x v)

 `(when (and (consp index) (typep (car index) ',x))

 (setq ,v (car index)) (pop index) t))

We now extend match so that it can recursively match on sublists.

(defun compilelst (l)

 (if (atom l) `(eql index ',l)

 `(and ,(compileit (car l)) ,(compilelst (cdr l)))))

(defmacro match (x) ; sublist uses new lexical index

 `(when (and (consp index)

 ,(if (atom x) `(eql (car index) ',x)

 `(let ((index (car index))) ,(compilelst x))))

 (pop index) t))

C. CONTEXT-FREE GRAMMARS

So far, we have only considered grammars which were expressed as a single regular expression.
Since we have iteration, but not recursion, we cannot leave the domain of finite state languages.

12An efficient META-based lambda-list parser allows for a code-runner (as opposed to a code-walker).

ACM LISP Pointers IV,2 (April-June 1991),3-15.

© 1991 Nimble Computer Corporation 8

By giving portions of our grammars names, however, and then utilizing those names recursively,
we immediately gain the possibility of parsing (some) context-free languages.13

As might be expected, each named expression becomes a "production", which is implemented as a
Lisp function. These Lisp functions must return a truth value, because our AND/OR nests use truth
values for navigation. This means that a grammar which performs a transformation cannot
communicate its results through a normal Lisp return, but must communicate by means of side-
effects. In order for these side-effects to be communicated through lexical instead of
special/dynamic variables, we group the "production" functions into a LABELS nest which is
lexically included within a larger function which provides the lexical variables used for
communication. We have already seen the use of lexical variables local to each production for
communication within that production; we use lexical variables outside the LABELS nest for
communication among the productions and for communication of the result outside of the LABELS
nest. As a mnemonic, we often use a nasty Common Lisp pun, and make the name of the result
variable for a function be the same as the name of the function.

The code below illustrates the use of a LABELS nest of productions, although we have already
shown how to parse numbers using a single grammar. Note that each production saves the value
of the index location, so that if the production fails, the program can back up to where it was
when the production started. Note also that we utilize the capability of executing arbitrary Lisp
code within the "!" escape expression to actually call the production as a function; this capability
could be used to parameterize a production by passing arguments.14

(defun parse-number (&aux (index 0) integer ratio floating-point-number)

 (labels

 ((integer (&aux (old-index index) <locals for integer>)

 (or (matchit <grammar for integer>)

 (progn (setq index old-index) nil)))

 (ratio (&aux (old-index index) <locals for ratio>)

 (or (matchit <grammar for ratio>)

 (progn (setq index old-index) nil)))

 (floating-point-number (&aux (old-index index) <locals for f-p-n>)

 (or (matchit <grammar for floating-point-number>)

 (progn (setq index old-index) nil))))

 (matchit {!(integer) !(ratio) !(floating-point-number)})

 (return (or integer ratio floating-point-number))))

Our compiler for Common Lisp format strings utilizes this technique.

D. EFFICIENCY, OPTIMIZATION AND A CHALLENGE TO SCHEME

We have claimed that META can be efficient, so we must show how META's compilation can
produce nearly optimal machine code. The basic tools we will use are declarations, caching,
inlining and short-circuiting.

1. Declarat ions

Through the use of declarations, we aid the compiler and make sure that it knows which variables
are characters, which are fixnums and which are more general variables, so that the most efficient
code is generated. Of particular importance are the fixnum declarations for string index variables
which are incremented/decremented and the cons declarations for variables which must be popped;
in both these cases only one or two machine instructions need be generated.

If parsing a string, we should find the underlying "simple" string and parse that instead, after
suitably translating the starting and ending indices. This is because it is cheaper to perform the

13An arbitrary context-free language can be parsed by techniques such as the LINGOL parser [Pratt73], which can

parse in time O(n3); we have also converted this parser to Common Lisp.

14Woods' Augmented Transition Networks (ATN's) [Woods70] were a rediscovery of the META technique for CF
grammars.

ACM LISP Pointers IV,2 (April-June 1991),3-15.

© 1991 Nimble Computer Corporation 9

translation once, rather than performing it on every access to the string. On a byte-addressed
machine, access to a "simple" string consists of an index check plus an indexed load; since we are
already checking the index in the parser, we can dispense with the redundant index check during
the string access.

If parsing a list, then the parser will already be checking for the end of the list, so that unchecked
CAR and CDR instructions may be safely used in this instance.

2 . C a c h i n g

In several cases, we "peek" at the same character several times before it finally matches. This
problem can easily be corrected by caching the next character in a lexical variable, so that the
compiler may possibly keep this lexical variable in a register. The need to cache such a character is
not so acute in the C language, where stream accessing functions getc and ungetc are most likely
defined as macros which already manipulate a cached value, but Common Lisp's peek and
read-char are quite heavyweight due to the flexibility of streams and the large variety of options.

The one potential problem with caching is what value to store in the cache on an end-of-file. For
maximum efficiency, one should be able to treat it as just another character, which doesn't match
any real character or character type. One does not want to restrict the kinds of characters that can
appear in a grammar, however. One is therefore led to the C solution of utilizing a non-character
as an EOF value.

3 . In l in ing

Potentially the most expensive single operation in a META parser is the call to typep which is
produced by "@(<type> <variable>)". We have used the Common Lisp type system for character
class hacking, because it is very flexible and it was already there. In most Common Lisp
implementations, however, a typep call is likely to be quite slow. If one is lucky, then simply
proclaiming typep to be inline should speed parsing up substantially. If this is still too slow, we
have two choices: we can either compile more complex code, or we can fix typep to be more
efficient. We choose the course of making typep more efficient.

We change our compiler to compile into a macro my-typep,15 which recognizes the important
special cases, such as a member list, which we will compile into a case macro. The case macro
already has enough restrictions and context to compile into a table-driven dispatch, and if a
particular implementation does not do this, then we can expand my-typep into the macro my-case,
which will.

4. Short-circuiting

META uses a plethora of AND's and OR's, which can be quite inefficient if not compiled properly.
If your compiler compiles these expressions efficiently, then you may skip this section.16

The proper compiling technique for compiling AND/OR expressions has been known since the
earliest days of Lisp, but is not well-known, and students continually rediscover it.17 Short-
circuited boolean expressions can be efficiently compiled in a "single" recursive pass which
produces nearly optimal code—even in the presence of weak jump instructions which cannot reach
all of memory [Baker76a] [Baker76b].

The trick is to pass two "continuations" (really jump addresses) as arguments to the boolean
expression compiler which are the "success" and "failure" continuations of the expression being
compiled, and to emit the code backwards in the style of dynamic programming; the compiler
returns as a result the address of the compiled expression. Since one already knows the location to

15We could alternatively install a compiler optimizer, in which case every call to typep would be speeded up.

16Apple Coral Common Lisp for the Macintosh appears to handle short-circuits reasonably well.

17The technique has been described for Lisp and ML [Harper86] [Harper88] pattern matchers, as well as for generic
short-circuit evaluation; see references in [Aho86,p.512].

ACM LISP Pointers IV,2 (April-June 1991),3-15.

© 1991 Nimble Computer Corporation 10

which one must jump at the time a branch is emitted, as well as the location of the current
instruction, one can easily choose the correct short/long jump sequence.18 Our parser also requires
the efficient compilation of loops, which require a little more work because the jump-to location is
not yet known for backward jumps (which occur at the end of a loop). The simplest solution is to
always emit a backwards unconditional long jump, which we will then patch after the first
instruction of the loop has been emitted. Since we know at that time the length of the jump, we can
patch in a short jump/no-op sequence if short jumps are faster; the no-op's are never executed
because the loop never "falls through".

Even though our technique wastes a little space after loops in the code, the code is otherwise nearly
optimal, since the majority of jumps (and all conditional jumps) are forward jumps. Another
source of non-optimality comes from early exits from the body of a loop to the end of the loop.
One can conceive of these branches also being optimized to jump to the beginning of the loop, but
this situation is rare enough not to cause any significant loss of speed. In any case, the advantage
of a compiler optimization must be traded against the cost of programming and maintaining it; the
optimizations we suggest are extremely simple and quite often advantageous.

Below is a simple compiler for short-circuited boolean expressions with loops.

(defvar *program* nil "The reversed list of program steps.")

(defun emit (instruction next &aux (label (gentemp)))

 (unless (eql (car *program*) next) (push `(go ,next) *program*))

 (push instruction *program*) (push label *program*)

 label)

(defun emit-test (test succ fail &aux (label (gentemp)))

 (push (cond ((eql (car *program*) succ) `(unless ,test (go ,fail)))

 ((eql (car *program*) fail) `(when ,test (go ,succ)))

 (t `(if ,test (go ,succ) (go ,fail)))

 program)

 (push label *program*)

 label)

(defun compile-seq (x s f)

 (if (null x) s (compile (car x) (compile-seq (cdr x) s f19) f)))

(defun compile-alt (x s f)

 (if (null x) f (compile (car x) s (compile-alt (cdr x) s f))))

(defun compile (x succ fail)

 (typecase x

 (sequence (compile-seq x) succ fail)

 (alternative (compile-alt x) succ fail)

 (loop (let* ((go-back (append '(go nil) nil))

 (loop (compile (loop-body x) (emit go-back succ) succ)))

 (setf (cadr go-back) loop)))

 (execute (emit-test (execute-body x) succ fail))

 (t (emit-test `(match ,x) succ fail))))

5. Results and a Challenge to Scheme

Through the use of these techniques, we are able to achieve nearly the same machine code that we
would have generated ourselves if we were asked to program the parser in assembly language in
the first place. We have programmed and optimized a simple integer parser similar to the our first
example grammar which operates on simple strings—much like the standard built-in Common Lisp

18The backwards emission technique can also easily handle the "pipelined" jumps found in RISC architectures.

19This parameter should be an error label once the sequence has committed and can no longer back up; see the
literature on post-Prolog "committed choice" languages [Maher87] [Shapiro89].

ACM LISP Pointers IV,2 (April-June 1991),3-15.

© 1991 Nimble Computer Corporation 11

function parse-integer. We ran this function repeatedly on a 80,000-character simple string
which consisted of 10,000 copies of the sequence "+123456 ". Our META parse-integer took
about 25.4µsec/char., the built-in parse-integer took about 222µsec/char., and
read-from-string took about 700µsec/char.20 (Timings were performed on an Apple Macintosh
Plus with a Radius 68020 accelerator card, 4Mbytes of memory, and Coral Common Lisp v1.2 set
to the highest optimization levels.) Our optimized META parse-integer did not call any other
functions, not even subprimitives. It therefore appears that no further speed can be gained until
Coral utilizes the full 68020 instruction set and does a better job of compiling fixnum arithmetic;
e.g., it refuses to keep unboxed fixnums in registers very long.

The META parsing technique is an interesting challenge to Scheme compiler writers, because a
Scheme compiler must itself perform all of the optimizations we have discussed. Of particular
interest is the ability of a Scheme compiler to transform the nest of mutually recursive tail-calling
functions which are Scheme's equivalent of assembly language "goto" labels into assembly
language "goto" labels. This transformation should be possible, because none of these "functions"
have arguments.

E. CONCLUSIONS

We have shown a simple technique called META for building very fast parsers/translators in
Common Lisp, which is more general than some other techniques—e.g., the CGOL [Pratt76]
operator precedence system used in Macsyma. This technique already produces readable code, as
we have shown by a number of examples, but some might wish for even more readable code. In
such a case, one can easily utilize the META technique to produce a "reader macro" which
translates the exact [Steele90]-style syntax equations into an efficient parser. Our stomach, still
queasy from too much syntax, has so far vetoed these efforts.21 Should a grammar require it, the
META technique can also be easily extended to handle minimum/maximum numbers of loop
iterations in the sequence "$" construct.

There are several advantages to embedding a special-purpose parsing language into Common Lisp.
First, it provides a higher level of abstraction, which allows one to concentrate on recognizing the
correct syntax. Second, this abstraction is more compact, allowing the programmer to focus his
attention on a smaller body of code.22 Third, this higher level of abstraction allows for a number
of different implementations, of which we have exhibited three. Finally, we can get the parser
running relatively quickly, and if later additional speed is required, we can change the underlying
implementation without changing the code for the grammar.

We have found one problem in the use of the META system presented here—the inadvertent
returning of NIL by an escape expression "!", which causes a failure out of a sequence and a
possible nasty bug. We considered the possibility of including two execution escape characters—
one for predicates, and one for statements like setq. This change would avoid the necessity of
wrapping (progn ... t) around statements. We have not done this, however, because our
shyness about using up macro characters has exceeded our fear of bugs.

We are uncomfortable about the large volume of side-effects present in META-style parsers.
Given the nature of a parsing task, however, which is emulating a state machine (with or without a
push-down stack), it is unlikely that a parser without side effects could be very efficient without an
extremely clever (i.e., very expensive) compiler. The META technique does not seem to easily
extend to parsing tasks which must be able to "rub out"—e.g., directly parsing user type-in—
because that task seems to require the ability for arbitrary back-up, including backing up over side-

20Coral Common Lisp v1.2 read-from-string appears to erroneously ignore its :start argument.

21The original META paper [Schorre64] gives such a compiler for "BNF"-style syntax equations, which we
previously implemented (1966) in IBM 360 machine code.

22The code complexity of the resulting code is extremely high when measured by software engineering complexity
metrics; "productivity", as measured by these metrics, thus goes off-scale.

ACM LISP Pointers IV,2 (April-June 1991),3-15.

© 1991 Nimble Computer Corporation 12

effects. The LINGOL parsing system [Pratt73], based on "mostly functional" techniques, handles
the "rub out" problem quite elegantly.

Because META parsers address the backing-up issue directly as they are programmed, META
needs no complex run-time system like ATN's [Woods70] or Prolog. We conjecture, therefore,
that Prolog would need an extremely clever compiler to deduce the same degree of backing-up
optimization that the programmer manually performs in META.

While we have argued for the use of an embedded special purpose parsing language, we have NOT
advocated adding this language to the Common Lisp standard, which is weighted down far too
much as it is. A language like META that can be programmed in less than 1 page of code is hardly
worth standardizing. Standardization would also inhibit the possibilities of ad hoc optimizations
for a particular purpose, in which case the programmer would not use META at all. For these
reasons, we have presented META as a technique, rather than as a rigidly-defined language.

We have with great trepidation reviewed this technique for making parsing tasks easier to program,
because we feel that parsing complex syntax is an inherently low-value activity. Unfortunately,
any tool that makes these tasks easier is likely to get used, but not necessarily for the good; e.g., it
is said that all C programmers ever do is yacc, yacc, yacc!

F. ACKNOWLEDGEMENTS

We appreciate the suggestions of André van Meulebrouck for improving this paper.

G. REFERENCES

Aho, A.V., Sethi, R., and Ullman, J.D. Compilers: Principles, Techniques and Tools. Addison-Wesley, Reading,
MA, 1986.

Baker, Henry. "COMFY—A Comfortable Set of Control Primitives for Machine Language Programming".
Unpublished manuscript, 1976.

Baker, Henry. "COMFY-65—A Medium-Level Machine Language for 6502 Programming". Unpublished
manuscript, 1976.

Baker, Henry. "Equal Rights for Functional Objects". ACM OOPS Messenger 4,4 (Oct. 1993), 2-27.
Clinger, William D. "How to Read Floating Point Numbers Accurately". ACM PLDI'90, Sigplan Not. 25,6

(June 1990), 92-101.
Curtis, Pavel. "(algorithms)" column on Scheme macros. Lisp Pointers 1,6 (April-June 1988),LPI-6.19-LPI-6.30.
des Rivières, Jim, and Kiczales, Gregor. The Art of the Metaobject Protocol, Part I. Unpublished manuscript, Xerox

PARC, Oct. 1990.
Harper, R., MacQueen, D., and Milner, R. "Standard ML". ECS-LFCS-86-2, Comp. Sci. Dept., U. of Edinburgh,

March 1986,70p.
Harper, R., Milner, R., Tofte, Mads. "The Definition of Standard ML, Version 2". ECS-LFCS-88-62, Comp. Sci.

Dept., U. of Edinburgh, Aug. 1988,97p.
Haynes, Christopher T. "Logic Continuations". J. Logic Progr. 4 (1987),157-176.
Johnson, S.C. and Lesk, M.E. "UNIX Time-Sharing System: Language Development Tools". Bell Sys. Tech. J.

57,6 (July-Aug. 1978),2155-2175.
Kernighan, B. W., and Ritchie, D. The C Programming Language. Prentice-Hall, Englewood Cliffs, NJ, 1978.
Maher, M.J. "Logic semantics for a class of committed-choice programs". Proc. 4th Int'l Conf. of Logic Progr.,

MIT Press, 1987,858-876.
McCarthy, John. "History of LISP". ACM Sigplan Not. 13,8 (Aug. 1978),217-223.
Pratt, V.R. "A Linguistics Oriented Programming Language". Proc. IJCAI 3 (Aug. 1973),372-381.
Pratt, V.R. "CGOL—an Alternative External Representation for LISP users". AI Working Paper 121, MIT AI Lab.,

March 1976,13p.
Rulifson, J.F., Derksen, J.A., and Waldinger, R.J. "QA4: A Procedural Calculus for Intuitive Reasoning". SRI AI

Ctr. Tech. Note 73, Nov. 1972,363p.
Schorre, D.V. "META II: A Syntax-Oriented Compiler Writing Language". Proc. 19'th Nat'l. Conf. of the ACM

(Aug. 1964),D1.3-1-D1.3-11.
Schneider, F., Johnson, G.D. "META-3: A Syntax-Directed Compiler Writing Compiler to Generate Efficient Code".

Proc. 19'th Nat'l. Conf. of the ACM (1964),D1.5-1-D1.5-8.
Shapiro, E. "The Family of Concurrent Logic Programming Languages". ACM Comput. Surv. 21, 3

(Sept. 1989),412-510.
Woods, W.A. "Transition Network Grammars for Natural Language Analysis". CACM 13,10 (Oct. 1970),591-606.

ACM LISP Pointers IV,2 (April-June 1991),3-15.

© 1991 Nimble Computer Corporation 13

APPENDIX — COMMON LISP LAMBDA PARAMETER LISTS

(defun parse-lambda-exp

 (x &optional (env nil) &aux

 body rqds opts rst kwds? kwds okys? auxs fenv senv lenv

 v i sv k type form d pdecls specials)

 ;;; Parse a lambda-expression x and return 11 values:

 ;;; 1-3. body, reqd vars, opts (v i sv)

 ;;; 4-5. rest variable (or nil), keys? (can be t even when #6 is nil)

 ;;; 6-8 kwds ((k v) i sv), other keys?, auxs (v i)

 ;;; 9-11. lcl fn env, special env (except local specials), lcl var env.

 ;;; This lambda parser is presented for illustration only, and may not

 ;;; correctly implement ANSI Common Lisp syntax or semantics.

 (matchit x

 (LAMBDA ; we use upper case here only for readability.

 ($[@(vname v) !(push v rqds) !(push (make-vbind v) lenv)]

 {[&OPTIONAL

 $[{@(vname v) (@(vname v) {[@(t i) {@(vname sv) []}] []})}

 !(progn (push `(,v ,i ,sv) opts) (push (make-vbind v) lenv)

 (when sv (push (make-vbind sv '(member nil t)) lenv))

 (setq i nil sv nil) t)]] []}

 {[&REST @(vname rst) !(push (make-vbind rst 'list) lenv)] []}

 {[&KEY !(setq kwds? t)

 $[{@(vname v)

 ({@(vname v) (@(symbol k) @(vname v))}

 {[@(t i) {@(vname sv) []}] []})}

 !(progn (unless k (setq k (intern (symbol-name v) 'keyword)))

 (push `((,k ,v) ,i ,sv) kwds) (push (make-vbind v) lenv)

 (when sv (push (make-vbind sv '(member nil t)) lenv))

 (setq k nil i nil sv nil) t)]

 {[&ALLOW-OTHER-KEYS !(setq okys? t)] []}] []}

 {[&AUX $[{@(vname v) (@(vname v) {@(t i) []})}

 !(progn (push `(,v ,i) auxs) (push (make-vbind v) lenv)

 (setq i nil) t)]] []})

 ;;; Now process declarations.

 $[(DECLARE

 ${(SPECIAL $[@(vname v) !(push v specials)])

 ({[TYPE @(t type)] @(typename type)}

 $[@(vname v) !(setf (dtype (lookup v lenv))

 `(and ,type ,(dtype (lookup v lenv))))])

 (IGNORE $[@(vname v) !(progn (setf (dtype (lookup v lenv)) nil) t)])

 [@(t d) !(progn

 (when (eq (car d) 'function)

 (setq d `(ftype (function ,@(cddr d)) ,(cadr d))))

 (push d pdecls)

 t)]})]

 $[@(t form) !(push form body)])) ; Error if body ends in non-list.

 ;;; Fix up local environment to correctly handle special variables.

 (dolist (binding lenv)

 (let* ((v (vbind-name binding)))

 (when (or (declared-special-p v env) (member v specials))

 (setf (vbind-special-p binding) t))))

 ;;; Create special environment

 (let* ((nenv (append lenv env)))

 (dolist (v specials)

 (unless (declared-special-p v nenv)

 (setq senv (lx-bind-special v senv)))))

 (values (reverse body) (reverse rqds) (reverse opts) rst

 kwds? (reverse kwds) okys? (reverse auxs) fenv senv lenv))

ACM LISP Pointers IV,2 (April-June 1991),3-15.

© 1991 Nimble Computer Corporation 14

We have shown one scheme for parsing Common Lisp lambda parameter lists ("lambda-lists")
which easily generalizes to handle the full complexity of lambda-lists. It has one source of
inefficiency which is not easily eliminated, however. Whenever a variable name is to be matched,
we first check that the tentative variable name is a symbol, and we then check to see that it is not
one of the lambda-list keywords (&optional, &rest, &cetera). While this check can be open-
coded quite efficiently, we find that if a lambda-list keyword does occur, then it will be compared
against the list twice—once to determine that it is not a legal variable name, and once to determine
which of the lambda-list keywords it is. This inefficiency is due to the definition of variable names
as the complement of the set of lambda-list keywords relative to the set of symbols. While this
inefficiency could conceivably be eliminated by the use of escape forms like block/return-from, we
feel that any additional speedup will be overwhelmed by the additional costs of regularizing the
lambda-list for a less-sophisticated consumer.

